

mpii

Magnus Wahlström¹

Abusing the Tutte Matrix

A Polynomial Compression for the K-set-cycle Problem

March 1, 2013

¹ Max-Planck-Institut für Informatik, Germany

The K-Cycle Problem

K-Cycle

Given a graph G = (V, E), with terminals $K \subseteq V$: Is there a (simple) cycle through all of K?

The K-Cycle Problem

K-Cycle

Given a graph G = (V, E), with terminals $K \subseteq V$: Is there a (simple) cycle through all of K?

Previous work (algorithms)

- Ken-ichi Kawarabayashi (IPCO '08)
 - First $\mathcal{O}^*(f(|K|)$ -time (FPT) algorithm
 - Graph minors-style algorithm; $f(k) = 2^{2^{k^{10}}}$ (estimated)
- Björklund, Husfeldt, Taslaman (SODA '12)
 - Algebraic algorithm (define (exponentially) large polynomial over $GF(2^{\ell})$; test if all terms cancel).
 - Time $\mathcal{O}^*(2^k)$
- This talk:
 - Interpret O(2^k)-time algorithm as determinant sums procedure (Björklund, FOCS '10)
 - Derive polynomial compression

Previous work (algorithms)

- Ken-ichi Kawarabayashi (IPCO '08)
 - First $\mathcal{O}^*(f(|K|)$ -time (FPT) algorithm
 - Graph minors-style algorithm; $f(k) = 2^{2^{k^{10}}}$ (estimated)
- Björklund, Husfeldt, Taslaman (SODA '12)
 - Algebraic algorithm (define (exponentially) large polynomial over $GF(2^{\ell})$; test if all terms cancel).
 - Time $\mathcal{O}^*(2^k)$
- This talk:
 - Interpret $O(2^k)$ -time algorithm as determinant sums procedure (Björklund, FOCS '10)
 - Derive polynomial compression

Kernelization and Compression

- **Kernelization**: Given input (G, K),
 - Produce output (G', K') of same problem
 - of total length f(|K|),
 - in time poly(|G|).
- Compression: Given input (G, K),
 - Produce output X of any (fixed) problem
 - of total length f(|K|),
 - in time poly(|G|).
- Both notions seemingly equivalent

Kernelization and Compression

- **Kernelization**: Given input (G, K),
 - Produce output (G', K') of same problem
 - of total length f(|K|),
 - in time poly(|G|).
- Compression: Given input (G, K),
 - Produce output X of any (fixed) problem
 - of total length f(|K|),
 - in time poly(|G|).
- Both notions seemingly equivalent...until now.

Why is a compression surprising?

- k-Cycle (find cycle of length at least k)
 - NO polynomial compression unless PH collapses
- Ordered K-Cycle (find cycle through K with specified order)
 - Equivalent to Disjoint Paths
 - NO polynomial compression unless PH collapses
- K-Cycle (this talk):
 - Polynomial (cubic) compression
 - Kernel unknown (compression not (known to be) within NP)

Why is a compression surprising?

- k-Cycle (find cycle of length at least k)
 - NO polynomial compression unless PH collapses
- Ordered K-Cycle (find cycle through K with specified order)
 - Equivalent to Disjoint Paths
 - NO polynomial compression unless PH collapses
- K-Cycle (this talk):
 - Polynomial (cubic) compression
 - Kernel unknown (compression not (known to be) within NP)

Why is a compression surprising?

- k-Cycle (find cycle of length at least k)
 - NO polynomial compression unless PH collapses
- Ordered K-Cycle (find cycle through K with specified order)
 - Equivalent to Disjoint Paths
 - NO polynomial compression unless PH collapses
- K-Cycle (this talk):
 - Polynomial (cubic) compression
 - Kernel unknown (compression not (known to be) within NP)

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Consider determinant over $GF(2^{\ell})$.

$$A = \left(\begin{array}{cccc} 0 & a & d & 0 \\ a & 0 & 0 & c \\ d & 0 & 0 & b \\ 0 & c & b & 0 \end{array}\right)$$

$$\det A = aabb + acdb + dabc + dcdc$$

Basic fact

Over $GF(2^{\ell})$, det A enumerates cycle covers with only short or non-reversible cycles.

- Cycle C short: $|C| \le 2$
- Cycle *C* non-reversible: $A(i,j) \neq A(j,i)$, some $ij \in C$
- Proof: Reverse first reversible long cycle (e.g., by vertex incidence). Bijection between identical terms.

Basic fact

Over $GF(2^{\ell})$, det A enumerates cycle covers with only short or non-reversible cycles.

- Cycle C short: $|C| \le 2$
- Cycle *C* non-reversible: $A(i,j) \neq A(j,i)$, some $ij \in C$
- **Proof:** Reverse first reversible long cycle (e.g., by vertex incidence). Bijection between identical terms.

K-Cycle Preprocessing Step

Split every $v \in K$ such that d(v) = 2. Orient one edge. Add loops.

K-Cycle Preprocessing Step

Split every $v \in K$ such that d(v) = 2. Orient one edge. Add loops.

Essential observations

Observation 1

Let $v \in K$, x_i, x_j labels of incident edges. A monomial m in det A is divided by $x_i x_j$ if and only if the corresponding cycle cover contains a long cycle through v.

Essential observations

Observation 1

Let $v \in K$, x_i, x_j labels of incident edges. A monomial m in det A is divided by $x_i x_j$ if and only if the corresponding cycle cover contains a long cycle through v.

Observation 2

Let $F \subseteq E$ be all edges incident on K. Then G contains a K-cycle iff $\prod_{e \in F} x_e$ divides some term of det A.

Monomial detection

Let $P(x_1, \ldots, x_n)$ be a polynomial over $GF(2^{\ell})$, $I \subseteq [n]$. Define

$$P_{S=0}(\mathbf{x}) = P(\mathbf{x} : x_i = 0, i \in S).$$

Then

$$R(\mathbf{x}) = \sum_{S \subseteq I} P_{S=0}(\mathbf{x})$$

is non-zero iff $T = \prod_{i \in I} x_i$ divides a monomial in P.

Proof sketch. Count contributions of monomials m in P.

- T divides m: Counted exactly once.
- Otherwise: Counted each time $(T \cap m)$ divides T.

- Let $P(x) = \det A$. Let $F \subseteq E$ be the edges incident on K.
- Define

$$R(\mathbf{x}) = \sum_{S \subset F} P_{S=0}(\mathbf{x}).$$

- Evaluate $R(\mathbf{x})$ randomly in e.g. $GF(2^{\log n + k})$.
 - Requires $\mathcal{O}^*(2^{2k})$ time.
- Schwartz-Zippel: With probability $1 1/2^k$, the result is correct.
- $\mathcal{O}^*(2^k)$ -time algorithm similar (sum over orientations)

- Let $P(x) = \det A$. Let $F \subseteq E$ be the edges incident on K.
- Define

$$R(\mathbf{x}) = \sum_{S \subset F} P_{S=0}(\mathbf{x}).$$

- Evaluate $R(\mathbf{x})$ randomly in e.g. $GF(2^{\log n + k})$.
 - Requires $\mathcal{O}^*(2^{2k})$ time.
- Schwartz-Zippel: With probability $1 1/2^k$, the result is correct.
- $\mathcal{O}^*(2^k)$ -time algorithm similar (sum over orientations)

- Let $P(\mathbf{x}) = \det A$. Let $F \subseteq E$ be the edges incident on K.
- Define

$$R(\mathbf{x}) = \sum_{S \subset F} P_{S=0}(\mathbf{x}).$$

- Evaluate $R(\mathbf{x})$ randomly in e.g. $GF(2^{\log n + k})$.
 - Requires $\mathcal{O}^*(2^{2k})$ time.
- Schwartz-Zippel: With probability $1 1/2^k$, the result is correct.
- $\mathcal{O}^*(2^k)$ -time algorithm similar (sum over orientations)

- Let $P(\mathbf{x}) = \det A$. Let $F \subseteq E$ be the edges incident on K.
- Define

$$R(\mathbf{x}) = \sum_{S \subset F} P_{S=0}(\mathbf{x}).$$

- Evaluate $R(\mathbf{x})$ randomly in e.g. $GF(2^{\log n + k})$.
 - Requires $\mathcal{O}^*(2^{2k})$ time.
- Schwartz-Zippel: With probability $1 1/2^k$, the result is correct.
- $\mathcal{O}^*(2^k)$ -time algorithm similar (sum over orientations)

- Let $P(x) = \det A$. Let $F \subseteq E$ be the edges incident on K.
- Define

$$R(\mathbf{x}) = \sum_{S \subset F} P_{S=0}(\mathbf{x}).$$

- Evaluate $R(\mathbf{x})$ randomly in e.g. $GF(2^{\log n + k})$.
 - Requires $\mathcal{O}^*(2^{2k})$ time.
- Schwartz-Zippel: With probability $1 1/2^k$, the result is correct.
- $\mathcal{O}^*(2^k)$ -time algorithm similar (sum over orientations)

What parts can we do in polynomial time?

- $R(\mathbf{x}) \not\equiv 0$ iff K-cycle in G.
- Let α be random assignment to **x** in $GF(2^{\ell})$.
- Want to compute

$$R(\alpha) = \sum_{S \subset F} P_{S=0}(\alpha) = \sum_{S \subset F} \det A(S=0)$$

■ The matrix A now contains no variables!

What parts can we do in polynomial time?

- $R(\mathbf{x}) \not\equiv 0$ iff K-cycle in G.
- Let α be random assignment to **x** in $GF(2^{\ell})$.
- Want to compute

$$R(\alpha) = \sum_{S \subseteq F} P_{S=0}(\alpha) = \sum_{S \subseteq F} \det A(S=0)$$

■ The matrix A now contains no variables!

What parts can we do in polynomial time?

- $R(\mathbf{x}) \not\equiv 0$ iff K-cycle in G.
- Let α be random assignment to **x** in $GF(2^{\ell})$.
- Want to compute

$$R(\alpha) = \sum_{S \subseteq F} P_{S=0}(\alpha) = \sum_{S \subseteq F} \det A(S=0)$$

■ The matrix A now contains no variables!

What parts can we do in polynomial time?

- $R(\mathbf{x}) \not\equiv 0$ iff K-cycle in G.
- Let α be random assignment to **x** in $GF(2^{\ell})$.
- Want to compute

$$R(\alpha) = \sum_{S \subseteq F} P_{S=0}(\alpha) = \sum_{S \subseteq F} \det A(S=0)$$

• The matrix A now contains no variables!

Illustration

$$A = \begin{pmatrix} 0 & F & A_1 \\ F' & 0 & A_2 \\ A_1 & A_2 & A_3 \end{pmatrix}$$

Block sizes k + 2k + (n - 3k). Only F changes (parts set to 0). Introduce variables y on F:

$$A(\mathbf{y}) = \begin{pmatrix} 0 & F(\mathbf{y}) & A_1 \\ F'(\mathbf{y}) & 0 & A_2 \\ A_1 & A_2 & A_3 \end{pmatrix}$$

Illustration

$$A = \begin{pmatrix} 0 & F & A_1 \\ F' & 0 & A_2 \\ A_1 & A_2 & A_3 \end{pmatrix}$$

Block sizes k + 2k + (n - 3k). Only F changes (parts set to 0). Introduce variables y on F:

$$A(\mathbf{y}) = \begin{pmatrix} 0 & F(\mathbf{y}) & A_1 \\ F'(\mathbf{y}) & 0 & A_2 \\ A_1 & A_2 & A_3 \end{pmatrix}$$

$$R(\alpha) = \sum_{\mathbf{y} \in \{0,1\}^{2k}} \det A(\mathbf{y}).$$

- Only tiny $3k \times 3k$ -part of A depends on y.
- Recall: Row, column operations on A preserve det A
- Reduce A(y) to $3k \times 3k$ -matrix A'(y) with identical determinant polynomial.

$$R(lpha) = \sum_{\mathbf{y} \in \{0,1\}^{2k}} \det A(\mathbf{y}).$$

- Only tiny $3k \times 3k$ -part of A depends on **y**.
- Recall: Row, column operations on A preserve det A
- Reduce A(y) to $3k \times 3k$ -matrix A'(y) with identical determinant polynomial.

$$R(\alpha) = \sum_{\mathbf{y} \in \{0,1\}^{2k}} \det A(\mathbf{y}).$$

- Only tiny $3k \times 3k$ -part of A depends on **y**.
- Recall: Row, column operations on A preserve det A
- Reduce A(y) to $3k \times 3k$ -matrix A'(y) with identical determinant polynomial.

$$R(\alpha) = \sum_{\mathbf{y} \in \{0,1\}^{2k}} \det A(\mathbf{y}).$$

- Only tiny $3k \times 3k$ -part of A depends on **y**.
- Recall: Row, column operations on A preserve det A
- Reduce $A(\mathbf{y})$ to $3k \times 3k$ -matrix $A'(\mathbf{y})$ with identical determinant polynomial.

1.
$$A = \begin{pmatrix} F(y) & B \\ C & D \end{pmatrix}$$

- 2. $A' = \begin{pmatrix} F'(y) & 0 \\ 0 & D' \end{pmatrix}$ via row/column operations
- 3. $A'' = (F'(y)) \cdot \det D'$ since D' is variable-free
- 4. $\det A'' = \det A$.

Total size $\mathcal{O}(3k \cdot 3k \cdot \ell) = \mathcal{O}(k^3)$ (assume $\log n \le k$)

1.
$$A = \begin{pmatrix} F(y) & B \\ C & D \end{pmatrix}$$

2.
$$A' = \begin{pmatrix} F'(y) & 0 \\ 0 & D' \end{pmatrix}$$
 via row/column operations

- 3. $A'' = (F'(y)) \cdot \det D'$ since D' is variable-free
- 4. $\det A'' = \det A$.

Total size $\mathcal{O}(3k \cdot 3k \cdot \ell) = \mathcal{O}(k^3)$ (assume $\log n \le k$)

1.
$$A = \begin{pmatrix} F(y) & B \\ C & D \end{pmatrix}$$

- 2. $A' = \begin{pmatrix} F'(y) & 0 \\ 0 & D' \end{pmatrix}$ via row/column operations
- 3. $A'' = (F'(y)) \cdot \det D'$ since D' is variable-free
- 4. $\det A'' = \det A$.

Total size $\mathcal{O}(3k \cdot 3k \cdot \ell) = \mathcal{O}(k^3)$ (assume $\log n \leq k$).

1.
$$A = \begin{pmatrix} F(y) & B \\ C & D \end{pmatrix}$$

2.
$$A' = \begin{pmatrix} F'(y) & 0 \\ 0 & D' \end{pmatrix}$$
 via row/column operations

- 3. $A'' = (F'(y)) \cdot \det D'$ since D' is variable-free
- 4. $\det A'' = \det A$.

Total size $\mathcal{O}(3k \cdot 3k \cdot \ell) = \mathcal{O}(k^3)$ (assume $\log n \leq k$).

Conclusions

- K-Cycle solved via determinant sums
- Implies $\mathcal{O}(|K|^3)$ -sized instance compression
- NO polynomial kernel/witness known
- Only known problem where polynomial kernel and polynomial instance compression seem to diverge

