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Background Algorithm Compression

The K -Cycle Problem

K -Cycle

Given a graph G = (V ,E ), with terminals K ⊆ V : Is there a
(simple) cycle through all of K?
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Background Algorithm Compression

Previous work (algorithms)

Ken-ichi Kawarabayashi (IPCO '08)

� First O∗(f (|K |)-time (FPT) algorithm

� Graph minors-style algorithm; f (k) = 22
k
10

(estimated)

Björklund, Husfeldt, Taslaman (SODA '12)

� Algebraic algorithm (de�ne (exponentially) large polynomial over
GF(2`); test if all terms cancel).

� Time O∗(2k)
This talk:

� Interpret O(2k)-time algorithm as determinant sums procedure
(Björklund, FOCS '10)

� Derive polynomial compression
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Background Algorithm Compression

Kernelization and Compression

Kernelization: Given input (G ,K ),

� Produce output (G ′,K ′) of same problem
� of total length f (|K |),
� in time poly(|G |).

Compression: Given input (G ,K ),

� Produce output X of any (�xed) problem
� of total length f (|K |),
� in time poly(|G |).

Both notions seemingly equivalent
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Kernelization and Compression

Kernelization: Given input (G ,K ),

� Produce output (G ′,K ′) of same problem
� of total length f (|K |),
� in time poly(|G |).

Compression: Given input (G ,K ),

� Produce output X of any (�xed) problem
� of total length f (|K |),
� in time poly(|G |).

Both notions seemingly equivalent...until now.
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Background Algorithm Compression

Why is a compression surprising?

k-Cycle (�nd cycle of length at least k)

� NO polynomial compression unless PH collapses

Ordered K -Cycle (�nd cycle through K with speci�ed order)

� Equivalent to Disjoint Paths
� NO polynomial compression unless PH collapses

K -Cycle (this talk):

� Polynomial (cubic) compression
� Kernel unknown (compression not (known to be) within NP)
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Background Algorithm Compression

Determinants and Cycle Covers

Consider determinant over GF(2`).

A =


0 a d 0
a 0 0 c

d 0 0 b

0 c b 0


••

••

a

b

cd

detA = aabb + acdb + dabc + dcdc

After cancellation, enumerates matchings.
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Background Algorithm Compression

Determinants and Cycle Covers

Basic fact

Over GF(2`), detA enumerates cycle covers with only short or
non-reversible cycles.

Cycle C short: |C | ≤ 2

Cycle C non-reversible: A(i , j) 6= A(j , i), some ij ∈ C

Proof: Reverse �rst reversible long cycle (e.g., by vertex
incidence). Bijection between identical terms.
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Background Algorithm Compression

K -Cycle Preprocessing Step

Split every v ∈ K such that d(v) = 2. Orient one edge. Add loops.

→
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Background Algorithm Compression

Essential observations

Observation 1

Let v ∈ K , xi , xj labels of incident edges. A monomial m in detA is
divided by xixj if and only if the corresponding cycle cover contains a
long cycle through v .
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Essential observations

Observation 1

Let v ∈ K , xi , xj labels of incident edges. A monomial m in detA is
divided by xixj if and only if the corresponding cycle cover contains a
long cycle through v .

Observation 2

Let F ⊆ E be all edges incident on K . Then G contains a K -cycle i�∏
e∈F xe divides some term of detA.
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Background Algorithm Compression

Monomial detection

Let P(x1, . . . , xn) be a polynomial over GF (2`), I ⊆ [n]. De�ne

PS=0(x) = P(x : xi = 0, i ∈ S).

Then
R(x) =

∑
S⊆I

PS=0(x)

is non-zero i� T =
∏

i∈I xi divides a monomial in P.

Proof sketch. Count contributions of monomials m in P.

T divides m: Counted exactly once.

Otherwise: Counted each time (T ∩m) divides T .
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Background Algorithm Compression

The Algorithm

Let P(x) = detA. Let F ⊆ E be the edges incident on K .

De�ne
R(x) =

∑
S⊆F

PS=0(x).

Then R(x) ≡ 0 i� G has no K -cycle.

Evaluate R(x) randomly in e.g. GF (2log n+k).

� Requires O∗(22k) time.

Schwartz-Zippel: With probability 1− 1/2k , the result is correct.

O∗(2k)-time algorithm similar (sum over orientations)
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Background Algorithm Compression

Towards a compression

What parts can we do in polynomial time?

R(x) 6≡ 0 i� K -cycle in G .

Let α be random assignment to x in GF(2`).

Want to compute

R(α) =
∑
S⊆F

PS=0(α) =
∑
S⊆F

detA(S = 0)

The matrix A now contains no variables!
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Background Algorithm Compression

Illustration

A =

 0 F A1

F ′ 0 A2

A1 A2 A3


Block sizes k + 2k + (n − 3k). Only F changes (parts set to 0).
Introduce variables y on F :

A(y) =

 0 F (y) A1

F ′(y) 0 A2

A1 A2 A3


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Background Algorithm Compression

Compression

Want to compute:

R(α) =
∑

y∈{0,1}2k
detA(y).

Only tiny 3k × 3k-part of A depends on y.

Recall: Row, column operations on A preserve detA

Reduce A(y) to 3k × 3k-matrix A′(y) with identical determinant
polynomial.
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Background Algorithm Compression

Gaussian reduction

1. A =

(
F (y) B

C D

)
2. A′ =

(
F ′(y) 0
0 D ′

)
via row/column operations

3. A′′ = (F ′(y)) · detD ′ since D ′ is variable-free

4. detA′′ = detA.

Total size O(3k · 3k · `) = O(k3) (assume log n ≤ k).
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Background Algorithm Compression

Conclusions

K -Cycle solved via determinant sums

Implies O(|K |3)-sized instance compression

NO polynomial kernel/witness known

Only known problem where polynomial kernel and polynomial
instance compression seem to diverge
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